パワーステアリングのハンマリング音のシミュレーション解析

小林正典 大嶋昭男

Hammering Noise Simulation Analysis of Power Steering System

M. KOBAYASHI A. OHSHIMA

We have developed a simulation program to analyze hammering noise phenomenon and to compute return surge pressures which are the main cause of hammering noise. By changing the length of pressure pipe, return pipe and steel pipe or inserting a rubber pipe, the program has made it possible to study the optimal hose tuning in the limited vehicle space provided in the design stage.

Key Words: hammering noise, simulation, hose tuning, power steering

1.はじめに

近年,自動車の静粛化が進み,パワーステアリ ングシステムについても振動・騒音低減の要求が 高まっている.これまで,パワーステアリングシ ステムの振動・騒音は,車両との関連性が大きく 実車評価でしか判断できないことが多かったた め,自動車メーカの実車評価で最終チューニング するケースもあった.

しかし,ここ数年,車両の開発期間短縮に伴い, 実車評価でのトライアンドエラーの猶予はなくな り,特に振動・騒音については,実車評価では最 終確認のみが目的となってきている.したがって, この段階で不具合を出すことは,開発計画に対す る遅れを生じさせることになる.

車両の開発期間短縮にも対応できるサプライヤ として信頼されるためには,一回の実車評価で良 い結果を得ることが重要であり,そのためには実 車評価の前に,事前検討できる予測技術の開発が 必要になった.

パワーステアリング用配管に関係する振動・騒音

パワーステアリング用配管に関係する騒音は, 配管そのものが主原因である場合は少ない.本来 なら主原因となる部品で対策されるべき問題であ っても,その部品の構造上の問題であったり,ま た,他の制約条件から回避できないなど,主原因 となる部品での対策は実質上困難な場合が少なく ない.このため,パワーステアリング用配管の役 割は単に油を導く配管としての機能だけでなく, 新たに振動・騒音低減に対しても配慮することが 必要になってきた.

パワーステアリングシステムにおける振動・騒 音の中で,プレッシャ配管(高圧側)に関係する振 動・騒音としては,ポンプグー音,ギヤグー音¹⁾, ハンドル振動があるが,いずれもシミュレーショ ンプログラムが完成し,プレッシャホース製作前 の事前検討が可能になった.

今回, リターン配管(低圧側)に関係する振動・ 騒音として, ハンマリング音を取り上げ, シミュ レーションプログラムを開発した.本開発をもっ て, パワーステアリング用配管に関するシミュレ ーションはすべて完成した.

3. ハンマリング音の現象分析

3.1 ハンマリング音とは

悪路走行時,路面からの入力によりバルブの開 閉が生じ,これによりリターン回路に油撃(油で 配管を打撃する作用)が生じ,異音が発生する場 合がある.対策の方向としてはリターン配管のバ ルブに近い部分に適量のゴム管を挿入することで 低減できることが知られているが,限られた実車 レイアウトの中から,どの程度バルブに近い部分 にどの程度のゴム管を挿入すれば効果があるか実 車での試行錯誤になる場合が多い.

今回,シミュレーション解析を行うにあたり, ハンマリング音の現象を正確に分析するため,下 記実験を行った.

論

3.2 実験

[KN]

ハンマリング音が実際に発生するのは悪路走行 時であるが,実車での悪路走行ではさまざまな音 が混在するため,人間の耳にはかろうじて分類で きるものの,計測データからハンマリング音の信 号を特定することは困難である.したがって,図1 に示す方法でハンマリング音以外の音があまり発 生しないように工夫して,悪路走行の模擬実験を 行った.

エンジンONの結果を図2,エンジンOFFの結 果を図3に示す.

計測項目:軸力、メイン圧、リターン圧、車室内騒音 計測条件:エンジンON / エンジンOFF

図1 試験方法

Test method

Measurement results with engine ON

5k [Hz] 6k 7k

1k 2k 3k 4k

Measurement results with engine OFF

8k 9k 10k

- この実験により,以下のことが明確になった. ハンマリング音が発生するのはエンジンON の時にのみ(図2(d),図3(d)) 音の周波数は500Hz~2KHz(図2(e)) 音はサージ圧の発生とほぼ同タイミングで発 生(図2(c),図2(d)) 聴覚判断ではサージ圧1MPa以下ではタイヤ を打撃する音にまぎれて聞き取れない.
 - リターン配管内の圧力はサージ圧発生前後で 一定値(-0.07MPa)となる時間帯があるので リターン配管内に蒸気空洞が発生していると 考えられる.

この結果より, 音とサージ圧とは相関があるこ とが明らかになった.

さらに,この計測データを基に,サージ圧発生 のメカニズムを以下のように考える.

3.3 サージ圧発生のメカニズム

論

悪路走行でバルブに急激な開閉が生じた場合の バルブ周辺の油の流れを図4のように考察した.

図4 バルブ周辺の油の流れ Oil flow around valve

通常,バルブは開いているので,油圧回路に は一定流量の油が流れている.

急にバルブが閉じるとバルブよりも下流側の 油は急には止まれず,慣性力によりそのまま 流れようとする.しかし,バルブは閉じられ ているため上流からは油は補充されない.し たがって,この間に蒸気空洞が発生する. この空洞の圧力は絶対圧で0.03MPaで,大気 圧から比べると-0.07MPaであるので,空洞 が存在する限り下流側の油は常に上流側に引 っ張られている.

どそのころバルブが開いたとすると上流側か ら流れてきた勢いのある油が流れ込む. 下流側から引き戻された油と上流側から流れ てきた勢いのある油が衝突して衝撃圧(サー ジ圧)が発生する.

4.シミュレーションの検討

4.1 シミュレーションの概念

音とリターンサージ圧には相関があることが判 明したので,本シミュレーションでは配管内の圧 力をシミュレーションすることで,ハンマリング 音の机上検討用としての目的を達成できると考え た.実際に音のシミュレーションは困難としても, サージ圧のシミュレーションならば油の流れを追 って行けば不可能ではない.

油圧の時間的変化を計算する手法として,特性 曲線法を用いて,配管内の油を細かく分割し,分 割要素に対し運動方程式および連続の式を適用し た.この際の分割の方法を図5に示す.

図5 **配管の分割方法と圧力伝播**

Division of pipes and pressure propagation

パワーステアリング用配管は鋼管とゴム管で構 成される.分割の方法は鋼管,ゴム管にかかわら ず,微少時間∆tで圧力が伝播する距離を目安に分 割する.したがって圧力伝播速度の速い鋼管部は 長く,圧力伝播速度の遅いゴム管部は短く分割す ることになるが,こうしておくと, Δt秒後の圧力 の計算が容易になる.もし,ある時刻での各分割 格子点における状態(圧力,流速)がすべてわかっ ているなら,その分割された流体の微少時間Δt秒 後の状態(圧力,流速)を計算することはそれほど 困難ではない.この計算結果を基にさらにΔt秒後 の各部の状態も計算できる.初期での各分割格子 点における状態(圧力,流速)は既知であるので, これをスタートとして計算を繰り返すことにより Δt秒後ごとに各分割格子点の状態(圧力,流速)を 次々と求めることができる.

負圧発生時の計算においては,蒸気空洞モデル²⁾³⁾ を適用した.実際に上記モデルのまま計算してい くと,絶対圧力がマイナスの値になる場合が生じ, 計算結果は実際の現象とは異なってしまう.液体 の性質として,液体は圧縮に対しては強いが引っ 張りに対しては気化(蒸発)する性質がある.その ため,一旦蒸気空洞が発生すればその後空洞が消 滅するまでの間,圧力はその液体固有の蒸気圧で 一定の値になり,絶対圧力がマイナスの値になる ことはない.このような現象をうまく取り扱う方 法として,蒸気空洞モデルが都合よく当てはまっ た.

シミュレーション結果が実際に精度良く再現で きるかどうかは,負圧発生時の現象をいかにうま く取り扱うことができるかで決まる.

4.2 シミュレーションの基礎式

管路の断面上の圧力分布および流速分布は一様 であるとした1次元流れにおいて,管路の摩擦抵 抗を定常層流摩擦とすると,油の速度をu,位置 をxとして管内の油の運動方程式および連続の式 から次の2組の常微分方程式が得られる^{4 \ 5 \}.

$$\begin{cases} \frac{du}{dt} + \frac{1}{c} \frac{dp}{dt} + \frac{32}{D^2} u = 0 \qquad (1) \\ \frac{dx}{dt} = u + c \ (C^+) \qquad (2) \end{cases}$$

$$\frac{du}{dt} - \frac{1}{c} \frac{dp}{dt} + \frac{32}{D^2} u = 0$$
(3)

論

文

$$\frac{dx}{dt} = u - c \ (C^{-}) \tag{4}$$

ここで, は油の密度, cは圧力波の伝搬速度, は油の動粘度, Dは管の内径である.図6に示 すx-t面上において,式(1)は式(2)を満足する特性 曲線C⁺で成立し,式(2)は式(3)を満足する特性曲 線C⁻で成立する.従って,RおよびS点の圧力 と流速が得られれば,Δt秒後のT点の圧力と流速 を求めることができる.図中のA,B,C点での 圧力,流速がわかっていればR,S点はそれぞれ 線形補間によって求める.

Characteristic curve

4.3 蒸気空洞モデルの適用

式(1)~式(4)を差分化し,図7の配管に適用する. この際,計算上圧力が油の蒸気圧以下になる場合 は蒸気空洞モデルを適用し,次の各式(5)~67が得 られる.

油の蒸気圧をPv, T点の上流側流速をU_{TU}, 下流側流速をU_{TL}とすると,蒸気空洞の発生しな い時(P_T > Pvの場合)

$$U_{TU} = \{ U_{R} + U_{S} + (P_{R} - P_{S}) / (C) - 32 (U_{R} + U_{S}) \Delta T / D^{2} \} / 2$$
(5)

 $P_{s} = Pc + (U_{s} - C)(Pc - P_{B})$ (11) = $\Delta T / \Delta X$ (12)

蒸気空洞の発生する時(P _т	Pv の場合)	
$P_{T} = Pv$		(13)
C^{+} より $U_{TU} = C_3 - C_4 P_T$		(14)
C^{-} LU $U_{TL} = C_1 + C_2 P_T$		(15)
ただし,		
$C_1 = U_s - P_s / (C) - 32$	$U_s \Delta T \checkmark D^2$	(16)
$C_2 = 1 / (C)$		(17)
$C_3 = U_R + P_R / (C) - 32$	$U_R \Delta T \checkmark D^2$	(18)
$C_4 = 1 / (C)$		(19)

次に境界条件について考える.(図8)

図8 管接続部の特性曲線

Characteristic curve of connected pipes

- 1)上流端 ポンプより一定流量の油が供給される.ポンプ流量をQ₀,上流端管断面積をAとする.
 蒸気空洞の発生しない時(P_T > Pvの場合)
 U_{TU} = Q₀ / A
 C⁻より P_T = (U_{TL} C₁) / C₂
 (22)
 蒸気空洞の発生する時(P_T Pvの場合)
 U_{TU} = Q₀ / A
 Q_{TU} = P_V
 (23)
 P_T = P_V
 - C^{-} **L U**_{TL} = $C_1 + C_2 P_T$ (25)

2)下流端	圧力一定のリザーバタンクに繋が	る.
	一定圧ナ	Jを P0 _E とする.	
	$P_T = PO$	E	(26)
	$U_{TU} = C$	$C_3 - C_4 P_T$	(27)

Kovo

(30)

- $U_{\rm TL} = U_{\rm TU} \tag{28}$
- 3)バルブまたはオリフィスバルブはオリフィスとして扱う.
 蒸気空洞の発生しない時(P_{T1} > PvかつP_{T2} > Pvの場合)
 イ)C₂C₃/C₄+C₁ 0(正流)の時 U_{TU1} = (-C₅(C₂/C₄+A₁/A₂) +(C₅²(C₂/C₄+A₁/A₂)²+4C₅(C₂C₃/C₄+C₁))⁰⁵)/2
 - 口 $C_2C_3 / C_4 + C_1 < 0$ (逆流)の時 $U_{TU1} = (+ C_5 (C_2 / C_4 + A_1 / A_2)$
 - (C_5^2 ($C_2 / C_4 + A_1 / A_2$)² 4 C_5 (C_2C_3 / $C_4 + C_1$)^{0.5})/2 (31)
 - $U_{TL1} = U_{TU1}$ (32)
 - $P_{T1} = (C_3 U_{TU1}) / C_4$ (33) $P_{T2} = (U_{TU1}A_1 / A_2 - C_1) / C_2$ (34) $U_{TL2} = U_{TU1}A_1 / A_2$ (35)
 - $U_{\text{TU2}} = U_{\text{TL2}}$ (36)

ただし,添え字1は上流側2は下流側を示す.

- $C_5 = (U_{01})^2 / \Delta P_0 / C_2$
 - : 無次元バルブ開口面積
- (バルブは時間 T の関数.オリフィスは時間 Tについて一定)
- U₀₁:バルブ全開口時の管1の流速
- ΔP_0 : バルブ全開口時の圧力差
- A₁:管1の面積
- A2: : 管2の面積

蒸気空洞の発生する時(P_{T2} Pv < P_{T1}の場合(正 流))

- $P_{T2} = P_V$ $U_{TU1} = C_6 (-1 + (1 4(C_4 P_v C_3) / C_6)^{0.5}) / 2$ (37)
- $U_{TU1} = C_{6}(-1+(1-4(C_{4}P_{v} C_{3})/C_{6})^{J_{5}})/2$ (38) $U_{TL1} = U_{TU1}$ (39) $P_{T1} = (C_{3} U_{TU1})/C_{4}$ (40) $U_{TU2} = U_{TL1}A_{1}/A_{2}$ (41) $U_{TL2} = C_{1} + C_{2}P_{v}$ (42)
 ただし, $C_{6} = C_{2}C_{5}/C4$ (43) 蒸気空洞の発生する時(P_{T1} $P_{V} < P_{T2}$ の場合(逆

 $\begin{aligned} \widehat{\mathbf{m}})) \\ P_{T1} &= P_{\mathbf{V}} \\ U_{T12} &= C_{7} (1 - (1 - 4(C_{2}P_{v} + C_{1})/C_{7})^{0.5})/2 \end{aligned} \tag{44} \\ U_{T12} &= U_{T12} \\ U_{T12} &= U_{T12} \\ P_{T2} &= -(C_{1} - U_{T12})/C_{2} \\ U_{T11} &= U_{T12}A_{2}/A_{1} \end{aligned} \end{aligned}$

論

ただし, $C_7 = (A_1 / A_2)^2 C_5$ (50) $P_T = (-C_1A2 + C_3A_1) / (C_2A_2 + C_4A_1)$ 蒸気空洞の発生する時(P_{T1} Pvかつ P_{T2} Pvの 場合) $C^* J U_{T12} = C_1 + C_2 P_T$ $P_{T1} = Pv$ (51) $U_{T12} = U_{T1} = C_3 - C_4 P_T$ $P_{T2} = Pv$ (52) $U_{T11} = U_{T01}$ $C^* J U_{T12} = C_1 + C_2 P_V$ (53) 蒸気空洞の発生する時(P_T Pvの場合) $C^* J U_{T11} = C_3 - C_4 P_V$ (54) $P_T = Pv$ $U_{T11} = 0$ (55) $C^* J U_{T11} = C_3 - C_4 P_T$ $U_{T02} = 0$ (56) $C^* J U_{T11} = C_3 - C_4 P_T$ $U_{T02} = 0$ (56) $C^* J U_{T12} = C_1 + C_2 P_T$ $U_{T02} = 0$ (57) 4) 節 直列結合部 流量および圧力が同じとする . $P_{T1} = P_{T2} = P_T$ (57) $P_{T1} = P_{T2} = P_T$ (57) 5 $P_{T1} = P_{T2} = P_T$ (57) 5 $P_{T1} = P_{T2} = P_T$ (57)	
蒸気空洞の発生する時(P _{T1} PvかつP _{T2} Pvの 場合) P _{T1} = Pv (51) $U_{T12} = C_1 + C_2 P_T$ $P_{T2} = Pv$ (52) $U_{T12} = U_{T12}$ $P_{T2} = Pv$ (53) $U_{T12} = U_{T12}$ $U_{T12} = U_{T12}$ $U_{T12} = C_1 + C_2 P_V$ (53) 蒸気空洞の発生する時(P _T Pvの場合) C*より $U_{T11} = C_3 - C_4 P_V$ $U_{T11} = 0$ C*より $U_{T11} = C_3 - C_4 P_V$ $U_{T12} = 0$ (55) C*より $U_{T12} = C_1 + C_2 P_T$ $U_{T12} = 0$ (56) C*より $U_{T12} = C_1 + C_2 P_T$ $U_{T12} = 0$ * * * * * * * *)
場合) C・より $U_{TU1} = C_3 - C_4 P_T$ $P_{T1} = Pv$ (51) $U_{TU2} = U_{T12}$ $P_{T2} = Pv$ (52) $U_{T11} = U_{T01}$ C・より $U_{T12} = C_1 + C_2 P_v$ (53) 蒸気空洞の発生する時(P_T Pvの場合) C・より $U_{T01} = C_3 - C_4 P_v$ (54) $P_T = Pv$ $U_{T11} = 0$ (55) C・より $U_{T12} = C_1 + C_2 P_T$ $U_{T02} = 0$ (56) C・より $U_{T12} = C_1 + C_2 P_T$ $U_{T02} = 0$ (56) C・より $U_{T12} = C_1 + C_2 P_T$ $U_{T02} = 0$ (56) C・より $U_{T12} = C_1 + C_2 P_T$ $U_{T02} = 0$ (57) FFTデ-ク取り込み開始時間(s) (01) /* $P_{T1} = P_{T2} = P_T$ (57) FFTデ-ク取り込み勝竹時間(s) (01) /* $P_{T1} = P_{T2} = P_T$ (57) FFTデ-ク取り込み勝竹時間(s) (01) /* $P_{T2} = P_T$ (57) FFTデ-ク取り込み勝竹時間(s) (01) /* $P_{T2} = P_T$ (57) FTTデ-ク取り込み感び時間(s) (01) /* $P_{T2} = P_T$ (57) FTTデ-ク見の比量(s) (01) /* $P_{T1} = P_{T2} = P_T$ (57) (1)	•••
$P_{T1} = Pv$ (51) $U_{TU2} = U_{TL2}$ $P_{T2} = Pv$ (52) $U_{TL1} = U_{TU1}$ $C \cdot \mathcal{L} \mathcal{I} \mathcal{I}$ $U_{TL2} = C_1 + C_2 P_v$ (53) 蒸気空洞の発生する時(P_T $Pv o d d d e e e e e e e e e e e e e e e e$	·)
P _{T2} = Pv (52) U _{TL1} = U _{TU1} C * より U _{TL2} = C ₁ + C ₂ Pv (53) 蒸気空洞の発生する時(P _T Pvの場合) C * より U _{TU1} = C ₃ - C ₄ Pv (54) P _T = Pv U _{TL1} = 0 (55) C * より U _{TU1} = C ₃ - C ₄ P _T U _{TU2} = 0 (56) C * より U _{TU2} = C ₁ + C ₂ P _T U _{TU2} = 0 (56) C * より U _{TU2} = C ₁ + C ₂ P _T U _{TU2} = 0 (57) FFTデ-タ取り込み開始時間 s) 0.01 FFTデ-タ取り込み開始時間 s) 0.01 FFTデ-タ取り込み開始時間 s) 0.01 FFTデ-タ取り込み開始時間 s) 0.01 FFTデ-タ取り込み開始時間 s) 0.01 Maokta kg/m ³) 871 371 371 グ割時間 ms) 0.15 油の粘度 cSt) 17.7 FPessure Hose 10 74 ×10 ⁶ バルブ開閉時間 s) 0.16 バルブ開閉時間 s) 0.16 流量係数 0.7 1127 99 111-776	.)
C・より $U_{TL2} = C_1 + C_2 P_V$ (53) 蒸気空洞の発生する時(P_T Pv の場合) C・より $U_{TU1} = C_3 - C_4 P_V$ (54) $P_T = Pv$ $U_{TL1} = 0$ (55) $C^+ J U_{TU1} = C_3 - C_4 P_T$ $U_{TU2} = 0$ (56) $C^- J U_{T12} = C_1 + C_2 P_T$ $U_{TU2} = 0$)管直列結合部 流量および圧力が同じとする. $U_{TL1} = 0$ $P_{T1} = P_{T2} = P_T$ (57) FFTデータ取り込み開始時間 s) 0.01 FFTデータ取り込み開始時間 s) 0.01 FFTデータ取り込み開始時間 s) 0.01 FFTデータ取り込み開始時間 s) 0.01 FFTデータ取り込み開始時間 s) 0.01 FFTデータ取り込み開始時間 s) 0.01 FFTデータ取り込み離了時間 s) 0.01 FFTデータ取り込み離了時間 s) 0.01 FFTデータ取り込み離了時間 s) 0.01 FFTデータ取り込み離了時間 s) 0.01 FFTデータ取り込み離び時間 s) 0.01 FTTデータ取り込み離び時間 s) 0.01 FTTTデータ取り込み離び時間 s) 0.01 FTTTデータ取り込み離び時間 s) 0.01 FTTTT ク見(MPa) 0 FTTTT PTT PTT PTT PTT PTT PTT PTT PTT PT	.)
C*より $U_{TU1} = C_3 - C_4 P_v$ (54) $P_T = P_V$ $U_{TL1} = 0$ (55) C*より $U_{TU1} = C_3 - C_4 P_T$ $U_{TU2} = 0$ (56) C*より $U_{T12} = C_1 + C_2 P_T$ $U_{TU2} = 0$ (57) $U_{TU2} = 0$ /É直列結合部 流量および圧力が同じとする $U_{T11} = 0$ $P_{T1} = P_{T2} = P_T$ (57) FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み開始時間(s) 0.01 MOLtmark (s/m³) 871 小二ス諸元 内径 体積弾性率 アessure Hose 10 74<×10 ⁶ パルブ開閉時間(s) 0.16 流量係数 0.7 パルブ開閉時間(s) 0.16 流量係数 0.7	
$U_{TL1} = 0$ (55) $C^+ & J$) $U_{TU1} = C_3 - C_4 P_T$ $U_{TU2} = 0$ (56) $C^+ & J$) $U_{TL2} = C_1 + C_2 P_T$ $U_{TU2} = 0$ $U_{TU2} = 0$ $U_{TU2} = 0$ (57) $U_{TL1} = 0$ $V_{TL1} = 0$ $P_{T1} = P_{T2} = P_T$ (57) $FFT \vec{r} - \varphi RU J \& A R B B B B C S L$ 0.01 $FFT \vec{r} - \varphi RU J \& A R B B B B C S L$ 0.01 $FFT \vec{r} - \varphi RU J \& A R B B B B C S L$ 0.01 $\frac{\pi - 2 k k T}{P r c s s u r L u b e}$ 10 74×10^6 71 74×10^6 71 $V U T T R B U (S - V)$ 90 $U U = 7 E (MPa)$ 90	
$U_{TU2} = 0$ (56) C^{-} より $U_{TL2} = C_1 + C_2 P_T$ $U_{TU2} = 0$ $U_{TU2} = 0$ 湾直列結合部 流量および圧力が同じとする. $U_{TL1} = 0$ $P_{T1} = P_{T2} = P_T$ (57) FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み終了時間(s) 0.15 油の比重(kg/m³) 871 小一ス諸元 内径 体積弾性率 Pressure Hose 10 74 「1525] x 10 ⁶ パルブ開閉時間(s) 0.16 パルブ開閉時間(s) 0.16 流量係数 0.7	
U _{TU2} = 0 管直列結合部 流量および圧力が同じとする. U _{TL1} = 0 $P_{T1} = P_{T2} = P_T$ (57) FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み然了時間(s) 0 油の比重(kg/m³) 871 ガ割時間(ms) 0.15 アessure Hose 10 74<	
管直列結合部 流量および圧力が同じとする. U _{TL1} = 0 P _{T1} = P _{T2} = P _T (57) FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み開始時間(s) 0.01 ボース諸元 内径 体積弾性率 Pressure Hose 10 74 × 10 ⁶ Pressure Tube 7 1525 × 10 ⁶ バルブ開閉時間(s) 0.16 流量係数 0.7 バルブ開閉時間(s) 0.19 バルブ開閉時間(s) 0.16 流量係数 0.7 バルブ開閉時間(s) 0.19 バルブ開閉時間(s) 0.19 バルブ開閉時間(s) 0.19 バルブ開閉時間(s) 0.19 バルブ開閉時間(s) 0.19 バルブ開閉時間(s) 0.19 バルブ開閉時間(s) 0.19 (57) (57) (57) FFTデータ取り込み開始時間(s) 0.01 (57) FFTデータ取り込み開始時間(s) 0.19 (57)	
P _{T1} = P _{T2} = P _T (57) FFTデータ取り込み開始時間 s) 0.01 FFTデータ取り込み線了時間 s) 0 油の比重 (kg/m³) 871 分割時間 (ms) 0.15 油の粘度 (CSt) ガース諸元 内径 体積弾性率 Pressure Hose 10 74 ×10 ⁶ パルブ開閉時間 (s) 0.16 流量係数 0.7 パルブ開閉時間 (s) 0.16 流量係数 0.7	
FFTデータ取り込み開始時間(s) 0.01 FFTデータ取り込み終了時間(s) 0 mの比重(kg/m³) 871 か一ス諸元 内径 体積弾性率 Pressure Hose 10 74 ×10 ⁶ パルブ開閉時間(s) 0.16 流量係数 0.7 パルブ開閉時間(s) 0.16 流量係数 0.7 パルブ開閉時間(s) 0.16 流量係数 0.7	
Return Hose 9.6 14.8 ×10° Return Tube 3 1525 ×10° V/Hsg In 4.5 6 V/Hsg Out バルブ作動開始時間(s) 0.04 (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) (100) (100) (100) (100) 96 1000 (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)	-
図9 シミユレーション宗什入刀画面 Input screen of simulation conditions	
図9 シミュレーション示什人刀画面 Input screen of simulation conditions (Pa) (b)プレッシャ圧力	
図9 シミユレーション宗件入力画面 Input screen of simulation conditions (Pa) (b)プレッシャ圧力 2 000 000]
図9 シミユレーション奈什入力画面 Input screen of simulation conditions (Pa) (b)プレッシャ圧力 2 000 000 1 000 000	
図9 シミユレーション茶件入力画面 Input screen of simulation conditions (Pa) (b)プレッシャ圧力 2 000 000 1 000 000	
図9 シミュレーション家件入力画面 Input screen of simulation conditions (Pa) (b)プレッシャ圧力 2 000 000 1 000 000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45	0.5
図9 シミユレーション家件入力画面 Input screen of simulation conditions (Pa) 2 000 000 1 000 000 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 - 1 000 000	0.5
(Pa) (Pa) 2 000 000 1 000 000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 - 1 000 000 	0.5
	0.5
(Pa) (b) T U y y v E T) $(Pa) (b) T U y y v E T)$ $(b) T U y y v E T$	0.5
	0.5
(Pa) (Pa) (b)プレッシャ圧力 (b)プレッシャ圧力 (b)プレッシャ圧力 (b)プレッシャ圧力 (b)プレッシャ圧力 (b)プレッシャ圧力 (c)リターン圧力 (c)リターン圧力	0.5
	0.5
	0.5
	0.5
	0.5

5. 実験検証

論

5.1 条件設定

圧力の伝播速度 c はシミュレーションの結果に 大きく影響を与えるため実験的に求めた.さらに, 各種ホースへの展開を可能とするため,体積弾性 率としてまとめることにより,ホース特性(膨張 量)との関係も明確になった.

結果検証の題材として,実験車の諸元を設定した.その他,シミュレーションに必要な数値,条件等,シミュレーションの入力画面とあわせて図9 に示す.

5.2 実測結果とシミュレーション結果の比較

先の実車試験での圧力計測位置に相当するP2, P3位置でのシミュレーション結果を図10に示 す.

先の実測結果図2(b),図2(c)と比較すると, 波形は良くシミュレーションできた.

6.シミュレーションでの寄与度の分析

本シミュレーションを用い,図9の諸元で発生 するサージ圧を100として,各要素の影響を調べ ると図11の結果を得た.この結果は従来の経験 的な対策とも良く一致する.したがって本シミュ レーションはハンマリング音のサージ圧を予測す ることができると言える.

バルブ出口に近い部分にゴム管がないとサー ジ圧が大きい

リターン配管が長いとサージ圧が大きい

リターン配管径が大きいほどサージ圧は小さい

プレッシャ配管のゴム部が短い方がサージ圧 は小さい

ポンプ流量が小さいほどサージ圧は小さい リリーフ圧の影響はほとんど受けない.

図11 **サージ圧に対する寄与度**

Contribution to surge pressure

7.まとめ

ハンマリング音のような負圧空間を取り扱う計 算は難しいとされていたが,蒸気空洞モデルを 適用することで,精度の良いシミュレーション プログラムを作成することができた.

ハンマリング音の発生原因がリターンサージ圧 に起因することを明確にし,これまで,経験的 に用いられてきた対策の説明を明らかにするこ とができた.

今後,設計段階での机上検討用ツールとして活 用するとともに,当社製品のガイドラインの作 成に結び付けていく.

参考文献

- 1) 大嶋昭男,小林正典,前田克司: Koyo Engineering Journal, no. 153(1998)20.
- E. Benjamin Wyline: ターボ機械, vol. 11, no. 12(1982), vol. 12, no. 1(1984).
- 3) 山本他:日本機械学会論文集(B編), vol. 55, no. 513(1989).
- 4)(社)日本油空圧学会編:油空圧便覧第1編基 磁編,オーム社.
- 5) V. L. Streeter, E. B. Wyline: 流体過渡現象, 日本工業新聞社(1973).

者

筆

M. KOBAYASHI A. OHSHIMA

* ステアリング事業本部 ステアリング技術センター ステアリング実験部

* 軸受事業本部 軸受技術センター 技術管理部